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С использованием адаптивного метода удается решать многие сложные задачи геофи-

зики. Перечислим некоторые из них: обратные кинематические задачи отраженных и пре-
ломленных волн [1, 2], обратная динамическая задача отраженных волн в сейсморазведке [3, 
4, 7], обратные задачи гравиметрии и магнитометрии [4, 5, 6, 12, 13, 14], а также ряд других 
задач [9,10]. Начаты ранее [16] и в настоящее время продолжены исследования метода для 
решения обратной задачи магнитотеллурического зондирования (МТЗ). 

История возникновения и развития метода приведена в статье [10]. 
Прежде чем рассматривать свойства метода, приведем постановку задачи. Предпола-

гается, что имеется некоторая модель, характеризующаяся набором параметров. Это может 
быть вектор или набор векторов,  матрица (2D или 3D) или набор матриц и векторов. Обо-
значим значения неизвестных параметров X {x1, x2, … xj, … xn} 

Имеется математическая модель, связывающая неизвестные значения параметров с 
некоторым наблюдением (или преобразованным результатом наблюдения), представленные 
в виде системы линейных или нелинейных алгебраических уравнений U=AX или U=f(X). 

Предполагается, что известны начальные приближения параметров модели и погреш-
ности начальных приближений и погрешности данных, используемых для решения обратной 
задачи. Такая постановка называется статистической и известно много методов ее решения. 
В частности, известна полная статистическая постановка, в которой задаются не только по-
грешности, но и ковариационные матрицы [15]. 

Из общей статистической постановки нетрудно получить рекуррентный алгоритм, по-
зволяющий уточнять оценки параметров, переходя последовательно от уравнения к уравне-
нию. Достоинством рекуррентного метода является то, что он за один проход всех уравнений 
позволяет получить искомое решение и оценку ковариационной матрицы, а следовательно, и 
погрешности решений. Однако он, как и многие другие методы, связанные с обращением  и 
умножением матриц, позволяет решать системы с небольшим числом неизвестных. Это обу-
словлено следующими причинами. 

1. С ростом числа уравнений растут ошибки, связанные с умножением матриц 
2. Время счета растете пропорционально n3. 
3. Память, необходимая для хранения ковариационных матриц, растет пропорцио-

нально n2. 
В связи с этим возникла необходимость создания метода (в классе итерационных), ко-

торый был бы лишен указанных недостатков. Толчком к этому послужила острая необходи-
мость решения нелинейной обратной кинематической задачи сейсморазведки при много-
кратных наблюдениях отраженных волн, в которой неизвестными являются и статические 
поправки (вектора) и значения нулевых времен и скоростей пробега волн (матрицы). В роли 
U выступают времена прихода отраженных волн, которые, естественно, содержат погрешно-
сти, не учитывать которые означает обрекать алгебраическую постановку решения на неуда-
чу. Никакой метод, в том числе и в статистической постановке, и методы регуляризации по 
А.Н.Тихонову (в силу причин, указанных выше), не могли решать кинематическую задачу, в 
которой число неизвестных было около 102–103, а сейчас при 3D-наблюдениях 104 и более. 
Кстати, уязвимость методов регуляризации в последнее время видим ив работах 
В.Н.Страхова [17]. 

Обоснование такого итерационного (адаптивного) метода впервые сделано в 1977 г. и 
в 1983 г. опубликовано в работе [1]. История дальнейшего развития приведена в [10]. 

Обсуждая особенности метода, следует заметить следующее. 



Метод обобщает детерминированный метод проекций, известный математикам как 
метод Качмажа [15]. 

Запишем формулы метода, чтобы пояснить эту мысль. Каждое неизвестное на k+1 
шаге будет равно 
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где )1( −+= lnik – номер шага уточнения (не является показателем степени), 
 i – порядковый номер уравнения,  
 l – номер итерации,  
 n – число уравнений в системе,  
 j – порядковый номер неизвестного, 
 m – число неизвестных, 
 aij – коэффициент в l-ом уравнении j-го неизвестного. В случае нелинейной системы он будет за-
висеть от k, 
 k

xj
k
xjD )( 2σ=  – оценка дисперсии неизвестного на k-ом шаге, 

 ujuD σ=  – дисперсия ошибки измерения параметра u в i-ом уравнении. 

Оценка дисперсии xj на каждом шаге уменьшается следующим образом. 
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Если 02 =uiσ , а 12 =xjσ , то получим 
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Это и есть метод проекций или метод Качмажа. 
Рассмотрим простой пример и сравним адаптивный метод с методом проекций. 
Предположим, что имеем два неизвестных и 

всего одно уравнение (рис.1а). Имея начальное при-
ближение x0, y0 и используя метод Качмажа, полу-
чим уточненное решение в основании перпендику-
ляра от априорной точки на линию уравнения. 
Используя адаптивный метод, положив 0=uσ , а 

1== yx σσ , получим то же самое решение. 

Но предположим, что нам известны xσ и yσ  и они сильно отличаются. В таком слу-
чае, результат будет отличаться от предыдущего. 

Если 1;0 == yx σσ , то получим вариант решения в точке B, а если 0;1 == yx σσ , то в 

точке C. При других вариантах xσ и yσ  получим одно из решений в интервале точек B и C. 
Будут те же проекции, но в пространстве, нормированном на дисперсии, Dx и Dy. 

Решая эти примеры, мы предполагаем, что уравнение абсолютно достоверное, то есть 
a1x+a2x=u и u известно точно, т.е. 0=uσ . А теперь предположим, что uσ большое. При 

∞→uσ  уточнение вообще не будет происходить. При uσ , меняющемся от 0 до a, решение 
будет занимать пространство в треугольнике ABC. На этом простом примере показываются 
регуляризующие возможности метода уточнения параметров. В работах [5, 7] показаны ус-
ловия сходимости метода. Метод обладает большей скоростью сходимости, чем метод про-
екций. 

Анализ особенностей и опыта применения метода позволяет сделать следующие вы-
воды. 
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Метод не накапливает ошибок округления и позволяет решать системы с большим 
числом неизвестных. В настоящее время реально решаются задачи с числом неизвестных 104 
и более.  

Может решать системы, где число неизвестных больше, чем число уравнений. 
Обладает гибкими свойствами регуляризации. 
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